null
null
null
Tables | Are | Cool |
---|---|---|
col 3 is | right-aligned | $1600 |
col 2 is | centered | $12 |
zebra stripes | are neat | $1 |
标题1
标题2
标题22
标题223
使用自定义锚点
🎉 💯
INFO
This is an info box.
TIP
This is a tip.
WARNING
This is a warning.
DANGER
This is a dangerous warning.
Details
This is a details block.
STOP
危险区域,请勿继续
点我查看代码
js
console.log('Hello, VitePress!')
Wraps in a
js
export default {
name: 'MyComponent',
// ...
}
html
<ul>
<li v-for="todo in todos" :key="todo.id">
{{ todo.text }}
</li>
</ul>
js
export default {
data () {
return {
msg: 'Focused!'
}
}
}
js
/**
* @type {import('vitepress').UserConfig}
*/
const config = {
// ...
}
export default config
ts
import type { UserConfig } from 'vitepress'
const config: UserConfig = {
// ...
}
export default config
When $a \ne 0$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
Maxwell's equations:
equation | description |
---|---|
$\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero |
$\nabla \times \vec{\mathbf{E}}, +, \frac1c, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$ |
$\nabla \times \vec{\mathbf{B}} -, \frac1c, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | wha? |